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This paper examines the linear stability of zero-pressure-gradient boundary-layer 
flow over a class of anisotropically responding compliant walls. The anisotropic wall 
behaviour is derived from a material anisotropy which is characterized by relatively 
high tensile and compressive strength along a certain direction, termed the fibre axis. 
When the material stiffness along the fibre axis is sufficiently high, the resulting 
correlation between the horizontal and the vertical components of wall displacement 
induces a t  the flow-wall interface a Reynolds shear stress of a sign that is 
predetermined by the angle with which the fibre axis makes with the direction of the 
flow. The notion that anisotropic surface response could be employed to produce 
turbulent Reynolds shear stresses of predetermined sign a t  a surface was first 
explored by Grosskreutz (1971) in an experimental study on turbulent drag 
reduction. The present paper examines the implications of this interesting idea in the 
context of two-dimensional flow stability over anisotropic compliant walls. The 
study covers single- and two-layer compliant walls using the methodology described 
in Yeo (1988). The effects of wall anisotropy, as determined by the orientation of the 
fibre axis and the material stiffness along the fibre axis, on flow stability are 
examined for a variety of walls. The potential of some anisotropic compliant walls for 
delaying laminar-turbulent transition is investigated, and the contribution of the 
anisotropy to transition delay is appraised. 

1. Introduction 
Back in the early seventies, Grosskreutz (1971, 1975) proposed and experimented 

with a novel way of reducing the turbulent shear drag acting on a flat surface 
subjected to a two-dimensional turbulent shear flow. Grosskreutz’s idea was to 
design an anisotropically responding compliant surface which, when subjected to 
fluctuating flow stresses, moved in such a manner as to  induce a negative Reynolds 
shear stress a t  the surface. To achieve the desired result, the typical compliant wall 
used by Grosskreutz (1971) consisted of a compliant layer supported on an array of 
regularly spaced stubs which were inclined a t  45’ into the flow; see figure 1 (a) .  The 
constraining influence arising from the greater stiffness of the wall along the direction 
of the stubs could then be expected to induce a positive correlation between the 
horizontal and the vertical components of fluctuating velocity, resulting in the 
generation of negative Reynolds shear stress in the vicinity of the wall. 

Good as the idea may seem, the experimental results obtained by Grosskreut,z 
were, however, less than certain. Modest reduction in drag of up to  5%, computed 
based on the momentum thickness of the boundary layer, was noted; but more 
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FIGURE 1 .  Schematic views of (a )  the inclined-stub wall of Grosskreutz (1971) and ( b )  the 
sprung-lever flexible-plate wall of Carpenter & Morris (1985). 

importantly the walls appeared to perform almost as well when the direction of the 
inclined stubs was reversed. It is not our purpose here to  delve into the probable 
causes for the rather uncertain results obtained by Grosskreutz, but it is nevertheless 
pertinent to note that the magnitude and the lengthscale of the velocity fluctuations 
were likely to be quite small in the vicinity of the surface and might well have failed 
to elicit sufficient anisotropic response from the wall to  produce a significant negative 
or positive Reynolds shear stress. The resulting influence on the mean flow might 
hence also have been small, which therefore explains the indifference of the results 
to a reversal of stub orientation. 

There are substantial differences between the dynamics of a turbulent shear flow 
and that of a linearly unstable laminar shear flow. Therefore, despite the uncertain 
outcome of Grosskreutz’s experiments, the premise of his idea remains theoretically 
appealing from the point of view of flow stability. As in the case of turbulent shear 
flows, a negative Reynolds stress would, in a positive mean-velocity gradient, act to 
transfer energy from the disturbance to  the mean flow. This may be expected to have 
a beneficial influence on the stability of flows over such surfaces. The notion that 
anisotropic surface response may have a bearing on flow stability is not new, 
however. Benjamin (1964) made a passing mention of brush-like surfaces in his 
survey article on flow stability over flexible surfaces. Kramer (1965) also pointed out 
that the underlying structure of the dolphin skin is anisotropic and suggested that 
the anisotropy might have contributed in some unknown manner to the flow 
stabilization which he hypothesized to  have taken place over a dolphin in rapid 
swimming. It was only recently, however, that  interest in the flow stabilization 
potential of anisotropic walls took on a more concrete form. The linear stability of 
boundary-layer flow over Grosskreutz-type compliant walls was recently explored by 
Carpenter (1984, 1987) and Carpenter & Morris (1985, 1990). They modelled the 
anisotropic wall as a thin bending plate supported above a rigid base by a continuous 
array of inclined rigid sprung levers; see figure 1 ( b ) .  Because of the assumed rigidity 
of the levers, the displacement of the surface could only take place along directions 
perpendicular to the axis of the levers. This constrained motion of the surface 
produced, via the non-slip condition, a fixed correlation between the horizontal and 
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the vertical components of disturbance flow velocity, resulting therefore in the 
induction of Reynolds shear stress of fixed predetermined sign in the vicinity of the 
wall. The Carpenter-Morris model hence does correctly capture the essence of 
Grosskreutz’s idea. As a model of Grosskreutz’s actual walls, however, i t  is slightly 
deficient in that the levers are rigid whereas the silicon-rubber stubs may stretch and 
compress along their axis. Their results indicate that the Grosskreutz-type walls may 
be capable of achieving significant delay of transition to turbulence. A summary of 
the work they have done up till very recently is given in Carpenter & Morris (1990). 

In  this paper we present a different model of Grosskreutz’s walls. This is a 
homogeneous continuum material model. Anisotropic surface response similar to 
that of Grosskreutz’s walls is obtained by adopting a material anisotropy which 
allows for strong resistance to extension/compression to be specified along a given 
direction, termed the fibre axis. The simplest common model of anisotropy which can 
meet this requirement is transverse isotropy. A transversely isotropic material is 
characterized by the existence of an axis, termed the axis of isotropy, about which 
the properties of the material are identical in all directions perpendicular to this axis. 
To have a better physical appreciation of the nature of the anisotropy, i t  is useful to 
note that this kind of material anisotropy is quite commonly associated with 
composite materials which are derived from the reinforcement, of a soft isotropic 
material (the matrix) by a parallel family of straight fibres of a stiffer material, see 
figure 2 ; the axis of the fibres (fibre axis) is then the axis of isotropy. If the reinforcing 
fibres are very stiff, extension/compression of the material along the direction of the 
fibres will be strongly resisted by the fibres. As a model for the Grosskreutz walls, the 
present model has an advantage over the rigid-lever model of Carpenter & Morris in 
that i t  also allows for surface displacement to occur along the fibre axis when the 
material is specified to have finite stiffness along the axis. However, the present 
model is not intended and cannot claim to be a precise replica of Grosskreutz’s 
inclined-stub walls, which are non-continuum to begin with. 

The two-dimensional stability of zero-pressure-gradient boundary layers over 
single- and multi-layer isotropic-material compliant walls had been studied by Yeo 
(1988). In  this paper, we are interested in the effects of Grosskreutz-type anisotropic 
surface behaviour on the stability of the same flow. Section 2 sets out the essential 
theory, beginning with a description of the transverse-isotropy-material model and 
then its stress-strain constitutive law. The formulation of the stability eigenvalue 
problem for the coupled system of flow and wall follows the basic methodology (and 
terminology) described in Yeo (1988). The theory developed is more generally 
applicable to material anisotropies which possess a plane of symmetry parallel to the 
(q,z,)-plane of the stability problem. The latter condition is a weak symmetry 
requirement imposed to ensure that two-dimensional wall modes which are 
compatible with the Orr-Sommerfeld disturbance modes of the flow exist. The 
present paper can be regarded as a sequel to Yeo (1988), which is referred to 
hereinafter as I. Results showing the effects of the anisotropy on flow stability over 
single- and two-layer transversely isotropic material walls are presented and 
discussed in $3. To keep the anisotropic surface response simple, the two-layer cases 
examined are limited to walls which comprise a thin layer of stiff isotropic material 
bonded onto a much thicker but softer layer of transversely isotropic material. 

While the study is restricted to two-dimensional disturbance normal modes, it is 
important to note that three-dimensional modes can become important in walls 
which are highly compliant. Nevertheless, two-dimensional studies do provide a good 
and relatively cheaper preliminary assessment of the stabilization potential of 
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compliant walls in general. The study of three-dimensional modes is outside the scope 
of the present paper. Unlike the case of isotropic-material walls, the three- 
dimensional eigenvalue problem for flow over anisotropic-material walls does not, in 
general, admit reduction to an equivalent two-dimensional one. A study of the three- 
dimensional eigenvalue problem for flow over anisotropic-material walls is presented 
in Yeo (1986). 

2. Theory 
Figure 2 (a) shows schematically a two-dimensional boundary layer over a 

compliant wall which is composed of a uniformly thick layer of transversely isotropic 
material backed by a rigid base. The coordinate frame for the stability problem 
(xl, x2, x3) has its positive x,-axis pointing in the streamwise direction from left to 
right. The unperturbed surface of the compliant wall spans the (x,, x,)-plane. 
(xim), xim), x p ) )  denotes the material-property coordinate frame, with respect to 
which the material properties of the layer will be specified. 

2.1. Homogeneous transverse isotropy 

2.1.1. An introduction to transversely isotropic materials 
Transverse isotropy is one of the simplest forms of material anisotropy. It 

represents in the hierarchy of material anisotropy the next level of complexity to 
isotropy. For an isotropic material, the mechanical properties are identical in all 
directions. In the case of a transversely isotropic material, there is a distinguished 
direction, termed the axis of isotropy. This choice of term is used to indicate that the 
material properties of a transversely isotropic material are identical with respect to 
all directions perpendicular to the distinguished direction. Planes normal to the axis 
of isotropy are consequently planes of isotropy. Transverse isotropy literally means 
isotropy in the planes transverse to the axis. 

In practice, transversely isotropic material behaviour is most commonly realized 
in fibre-reinforced composite materials which are derived by embedding a parallel 
family of straight fibres in an isotropic matrix, see figure 2 ( b ) .  Figure 2 ( b )  shows a 
fibre-reinforced material with straight fibres aligned with the xkrn)-axis of the 
material-property coordinate frame. If the fibres are arranged randomly or in 
accordance with the hexagonal symmetry shown in figure 2 ( b )  on a plane normal to 
the fibres, then the mechanical properties of the material will be the same for all 
directions lying in the plane; that is, isotropic with respect to all directions 
perpendicular to  the parallel fibres. In making this statement, we have implicitly 
assumed that the physical processes that are envisaged occur on a lengthscale that 
is significantly longer than the average spacing between adjacent fibres, so that the 
discrete nature of the fibres does not matter and the material behaves as if it were 
homogeneous. The direction along which the fibres lie, the xim)-axis, is then clearly 
the axis of isotropy and is also called the Jibre axis for short in this paper. Planes 
parallel to the (xim), xLm))-plane are then planes of isotropy. 

For such composites, it is usual for the fibres to be produced from a material that 
is much stiffer than the embedding isotropic matrix. The stretching and compression 
of the material is then more strongly resisted along the fibre axis than in any other 
directions. If such a composite material is employed for a compliant layer, as is shown 
in figure 2 (a) (with its fibre axis in the (xlr x,)-plane), and if further the fibres are very 
stiff, then the displacement of the surface of the wall along the fibre axis will be 
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FIGURE 2. (a) Schematic view of flow over a uniformly thick layer of transversely isotropic (fibre- 
reinforced-type) material. (zl, z,, z3) is the coordinate frame for the stability problem. (xi"'), @", 
zim)) is the material-property coordinate frame. (5) (xirn), zim))-section of a fibre-reinforced specimen 
with some protruding fibres shown. Isotropy in the (xim), si"'))-plane is achieved by arranging the 
parallel fibres hexagonally as shown or randomly. 

strongly resisted. This will result in an anisotropic response which is very similar to 
that of the Grosskreutz walls and the theoretical model of Carpenter 6 Morris ; figure 
1 (a,  b ) .  It is important to note, however, that fibre-reinforced composites are not the 
only types of material that may exhibit transverse isotropy. We have made frequent 
references to these composites only because these may help to give readers who 
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are not familiar with the subject of material anisotropy a physical feel for the 
nature of the anisotropy studied here. The physical interpretation in terms of fibre- 
reinforced composites is useful, but not necessary, for the purposes here. And we do 
not intend to pursue further the finer points which relate to the actual physical 
realization of our wall model. There are other materials which may exhibit' transverse 
isotropy : materials with appropriate distributions of voids are examples ; the 
naturally evolved skin layer of dolphins, see figure 2 of Carpenter & Garrad (1985), 
may possibly be transversely isotropic too. 

2.1.2. Constitutive relation for transversely isotropic materials 
The stress-strain constitutive relation for a general anisotropic material, with 

viscous-type damping, undergoing small-amplitude sinusoidal deformation may be 
given in the form 

(1) 

where [apq] and [ers] are respectively the stress and the strain tensors. [C,,,,] is called 
the viscoelastic modulus tensor here and its components are in general complex and 
functions of frequency w. The superscript (m) denotes that the tensors are specified 
with respect to the material-property frame. The material-property frame is usually 
chosen such that the modulus tensor LC,,,,] assumes its simplest form, with the 
maximum number of zeros. The strain tensor field is defined in terms of the 
displacement field q = (vl ,  y2, v3)T by 

= C(m) p) 
PP pqrs 'rx I 

ers = i ( v r ,  s + v s ,  r ) .  (2) 

Einstein's convention on repeated indices and subscript commas is assumed 
throughout this paper. 

The viscoelastic modulus tensor [Cpqrs] satisfies the following symmetry con- 
ditions : 

C p q r s  = C q p r s  = C p q s r  and C p q r s  = C r s p q .  (3) 

These conditions reduce the number of independent components of [C,,,,] to a 
maximum of 21 for the most general homogeneous anisotropic medium. The number 
is reduced to  13 if the material exhibits a plane of symmetry perpendicular to which 
the properties are identical. A material exhibiting two or three mutually orthogonal 
planes of symmetry is termed orthotropic. An orthotropic material has a maximum 
of nine independent moduli. A transversely isotropic material, the anisotropy of 
interest here, is characterized by the existence of an axis of isotropy ; the properties 
are identical in all directions perpendicular to this axis. In  fact, identity in six evenly 
spaced (60') directions about the axis is sufficient for transverse isotropy (see p, 24 
of Lekhnitskii 1963) ; which is also why the fibres in figure 2 (a ,  b )  are shown to be 
arranged according to hexagonal symmetry. A transversely isotropic material has a 
maximum of five independent moduli in [Cpqrs].  Useful references on the subject of 
material anisotropy include Landau & Lifshitz (1970) and Green & Zerna (1968). The 
former contains a short section on viscous dissipation in anisotropic materials. 

The stress-strain relation for the most general transversely isotropic material, 
with the axis of isotropy specified along the x&m)-axis, can be represented in the form 
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and Om) is a matrix, commonly called the stiffness matrix, given by 

C ( m )  = 

- (m) 
-‘llll ‘1122 ‘1133 0 0 

‘I122 ‘1111 ‘1133 0 0 
‘1133 ‘1133 ‘3333 0 0 0 

0 0 ‘1313 0 
0 0 0 ‘1313 0 

> 

0 0 0 0 - 

see Green & Zerna (1968). The components of C(m) are in terms of the components 
from the viscoelastic modulus tensor [Cpqrs](m).  The five independent components in 
(4b)  can be expressed in terms of five physically meaningful and experimentally 
measurable quantities; shear moduli G and G‘, Poisson’s ratios v and v’, and Young’s 
modulus E : 

Ciyjl = G+M-’ , C$i2 = -G+M-’, C(m) 1133 - - 2v‘M-l (5a ,  b ,  c )  

C$?i3 = G ,  C!$?i3 = E ‘ + ~ v ‘ ~ M - ’ ,  ( 5 4  e )  

where M = 2( 1 - v) E-’ - ~v’~E’-’,  and E = 2G( 1 + v) .  Equations (5) can be obtained 
by solving equations (3.14) of Lekhnitskii (1963) for the stress components in terms 
of strain components (with axis of isotropy along x i m ) )  and then identifying the 
coefficients with the components of [ C ~ ~ ~ J  using (4). 

The two parameters G and G’ govern the behaviour of the material in the shear 
mode : G denotes the shear modulus for shearing which occurs in planes of isotropy, 
a!?) = 2G.5::) ; G’ is the shear modulus for shearing which occurs in planes normal to  
a plane of isotropy, in particular a;?) = 2 G 4 ‘ )  and gi:) = 2G4y). E is the Young’s 
modulus of the material along the axis of isotropy (or fibre axis). It governs the 
stiffness of the material in uniaxial extension and compression (only v;?) + 0) along 
x i m ) ;  a:?) = E@. When E’ is large, stretching of the material along the axis of 
isotropy is strongly resisted. The transverse reduction which occurs in the plane of 
isotropy owing to uniaxial extension along the axis of isotropy is denoted by the 
Poisson’s ratio v’ ; @) = - v’&‘). v denotes the Poisson’s ratio characterizing 
transverse reduction in the plane of isotropy for uniaxial extension along a direction 
lying in the plane of isotropy. 

When specifying the properties of transversely isotropic materials, it is much more 
intelligible to talk and think in terms of these experimentally measurable material 
parameters than the raw components of [Cpqrs](m).  Once C, G ,  E ,  v and v’ are known, 
the non-zero components of [Cpqrs](m) are completely determined via ( 5 ) .  It is useful 
to note that a transversely isotropic material becomes isotropic when G = G ,  v = v’ 
and E = E = 2G( 1 + v) .  An isotropic material is characterized by just two 
independent moduli. 

Figure 2 (a )  shows the relationship between the material-property coordinate 
frame and the coordinate frame for the stability problem. A ,  is the angle in degrees 
with which the axis xirn) is rotated from the x3-axis, measured positively in the 
anticlockwise direction. When posing the stability problem in the (xl, x2, x3)-frame we 
need to know the stress-strain law of the material of the layer in this frame. The 
moduli tensor [Cij,,] in the frame of the stability problem can be obtained from 
[CpqJmf by applying the transformation rule for Cartesian tensors, 

Cpqrs = C@ l p i  Jqj  l r ,  Is, (6) 
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where the non-zero direction cosines are l , ,  = cosA,, I , ,  = -sinA,, l , ,  = -113 and 

2.2. Stability of the $ow-wall system 
We now consider the stability of the coupled system of flow and anisotropic wall to 
small-amplitude sinusoidal disturbances having the variation eiaxl ePiwt. This 
represents an x,-travelling wave with phase speed c = w / a  where w and a are 
respectively the frequency and the 2,-wavenumber of the disturbance wave. 

2.2.1. Flow stability equation 
The basic flow of interest here is the zero-pressure-gradient boundary-layer flow 

over a flat surface. We assume the flow to be locally parallel and given by the Blasius 
solution to Prandtl’s boundary-layer equations. In  dimensionless form, the xl- 
component of the basic flow is given by 

$3, = 41. 

where f(zJ, the Blasius stream function, satisfies the equation 

2f+rn2f”f  = 0 (7 bf 

subject to the boundary conditions f(0) = f’(0) = 0 andf’(oo) = 1. The prime denotes 
an ordinary derivative with respect to x,. All quantities relevant to the flow domain 
are assumed to have been non-dimensionalized with respect to the following 
reference scales : uZ) (free-stream velocity) for velocities, P )  ( = m(uid) xid)/~g)) t )  for 
lengths and pid) (fluid density) for density. Here uid) is the kinematic viscosity and xid) 
is the distance from the leading edge. Superscript (d) indicates that the marked 
quantity is dimensional. We take to be the local displacement thickness, in which 
case m = 1.72078. The approximation of the basic flow by the Blasius profile U(x,) 
and the assumption of local flow parallelism are valid when the streamwise Reynolds 
number R, ( = Ug)  xld)/uid)) is large. 

The stability analysis simplifies tremendously when the flow is assumed to be 
locally parallel. Let EU = ( E U ~ ,  0 , ~ ~ ) ~  be a two-dimensional perturbation of the 
locally parallel basic flow U(x,) il and E @  the corresponding perturbation stream 
function ( E  is a small real quantity) so that u1 = @,, and u, = - @,, ; then in the 
normal-mode analysis, @ has a separable solution of the form +(x3) eiaxl ePiwt, where 
the x,-dependent function +(x3) is governed by the Orr-Sommerfeld equation 

R, = 7 J $ B ( d ) / ~ i d )  denotes the Reynolds number based on the local displacement 
thickness tYd). 

2.2.2. Wave propagation in anisotrop~e-mat~rial walls 

We next consider the dynamics of wave propagation in a compliant wall which 
may be composed of one or more uniformly thick layers of transversely isotropic 
materials. The treatment given below is, however, also applicable to homogeneous 
materials of more general anisotropy. No significant simplification is obtained by 
restricting the analysis only to transversely isotropic materials because the moduli 
tensor [C,,,] in the coordinate frame (x,, x2, x,), derived by transformation from 
[Cpgrs](m),  can be quite complex (containing many non-zero terms). 
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The non-dimensionalization of all quantities relevant to the wall follows that of the 
flow with the exception of the lengthscale. A fixed lengthscale, denoted by Lc) ,  
rather than the local boundary-layer lengthscale is used. This is because the latter 
varies with the downstream distance whereas the parameters of the compliant layers 
do not. A fixed reference lengthscale with respect to which the wall parameters 
remain constant is to be preferred. The wall lengthscale L$? is defined implicitly 
through the specification of a reference Reynolds number denoted by 

R, = uz) L(d) ,,(d), 
W l f  

Let us consider the propagation of small-amplitude disturbances in a single homo- 
geneous anisotropic layer. The displacement field of the disturbance q = (q,, q2,  T,I,)~ 

is governed by the momentum equations 

p q p  = r p q , q  ( p  = 1 ,2 ,3 ) ,  ( 9 4  

with @pq = Qpql-s%m (9 b) 
and E,, being as defined in (2); see Section 34 of Landau & Lifshitz (1970). Each dot 
above qp  signifies partial derivative with respect to time t .  Equations (9) admit 2,- 

propagating wave solutions of the form 

qp = jjp(z3) e’% e-iwt (P = 1,2 ,3)  (IOU) 

(lob) 

where f P ,  the x,-dependent amplitude, has the form 

f P P  = B eiY% (Bp is a complex constant). 

(pW2~p,--pqrskqkr)Bs = 0 (P = 1 ,2 ,3 ) ,  (11)  

The substitution of (lOu, b)  into (9) yields a set of homogeneous linear equations in 
B, : 

where (kl, k,, k,) = (a, 0, y ) .  a,, is the Kronecker delta. The existence of a non-trivial 
solution vector B = (Bl ,  B,, B,)T is then given by the condition that the determinant 
of (11) is zero. For a wave of specified a and w ,  the determinantal equation is a six- 
degree polynomial equation in y. Assuming the six y-roots to be distinct for 
simplicity, there are then six fundamental solutions of the form of (10) from which 
all x,-propagating waves of given a and w are linearly constituted. In the most 
general case, some or all of the six eigenvectors B associated with the y-roots may be 
non-zero in all its components; Bi =k 0 for j = 1,2 ,3 .  These correspond to xl- 
travelling waves with a three-dimensional displacement field. These three- 
dimensional modes are not compatible with the two-dimensional disturbance modes 
( U ~ , O , U , ) ~  of the flow because the non-zero q2 component of wall displacement 
would excite a u2 component in the flow hence rendering the stability problem 
effectively three-dimensional. Such modes are outside the scope of the present 
paper. A theoretical treatment applicable to this more general case is given in Yeo 
(1986). 

Such xl-propagating three-dimensional fundamental wall modes (Bj + 0 for 
j = 1,2 ,3) ,  however, do not exist for the class of walls investigated here. In  fact, such 
three-dimensional modes do not exist whenever the material properties of the 
wall are symmetric about the (xl, x,)-plane. The (x,, s,)-plane is clearly a plane of 
symmetry for the cases of interest here because it contains the axis of isotropy xim), 
figure 2 (a ) .  The existence of a plane of symmetry is a very weak symmetry condition. 
The analysis given below is therefore applicable to a very large class of anisotropic 
materials. 
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When the material properties are symmetric about the (x,,x,)-plane, all the 
components of the moduli tensor [C,,,,] which contain the index 2 either one or three 
times must be zero ; see $ 5.4 of Green & Zerna (1968). Equations (1 1) then simplify to 

('1111 + '1313 Y 2  + 2G1113 ay -Pw2)  '1 + 
('1113 "2+c3313Y2+(c1133+c1313) ay)B3 = O, (Iga) 

('2112 + '233, y2 + "2132 "Y-Po2)  B2 = 0, (12b) 

(C1313a"C3333 y2+2C3313ay-po2)B, = 0. (12c) 

(CoefR,) A = 0, (13) 

('1113 '3313 y 2  + ('1133 + '1313) a y )  Bl + 

The determinant of (12) has the factored form 

where (CoefB,) is the coefficient ofB, in (12b) and A is the determinant obtaincd from 
the coefficients of B, and B, in (12a, c ) .  (CoefB,) is quadratic in y. Two y-roots are 
obtained from (CoefB,) = 0 while the remaining four y-roots come from A = 0. It is 
easy to see, from (12), that  the B-eigenvectors for the two y-roots of (Coef H,) = 0 
have the form (0, B,, O)T. These correspond to a one-dimensional fundamental plane 
wave with displacement field (0, T,, O)T propagating in the x,-direction. Similarly the 
four y-roots of A = 0 have B-eigenvectors of the form (Bl,0,B3)T which arc two- 
dimensional (plane-strain) fundamental x,-propagating plane waves. 

The two plane-wave solutions in the first group with vl = v3  = 0 are of little 
interest to us here. Such waves also exist for isotropic material layers. Dynamically 
these one-dimensional (anti-plane) wave modes are coupled via the non-slip condition 
u, = rj, a t  the flow-wall interface to the 2,-component of disturbance flow velocity 
u, = G2eia(s1-et), which is governed by the following equation 

i ~ - [ a 2 + i a R d ( U - c ) ] i ,  = 0 ;  (14) 

see $5.1 of Yeo (1986). A one-dimensional eigenvalue problem which determines the 
linear stability of U(x3) i, to u,-perturbations can be formulated ; which is distinct 
from the two-dimensional Orr-Sommerfeld problem. It suffices for the purposes here 
to note that the eigenvalue spectrum of this one-dimensional stability problem can 
be shown to comprise only damped (time-asymptotic) modes (Ye0 1990). 

The two-dimensional plane-wave solutions associated with the four y-roots of 
A = 0 are compatible with the OS modes of the flow, and hence are the solutions 
of interest here. We denote the four y-roots and their corresponding eigenvectors 

yn and 8") = (Bp),  O,Bc))T (n = 1 , .  . . ,4 ) ,  

where the superscript (n) denotes the nth root. Assuming the y-roots to be distinct 
for simplicity, the four wave solutions 

by 

(n=  1,  ..., 4) (15) 

form a fundamental system of solutions for two-dimensional xl-propagating waves of 
given a and w .  Any xl-propagating wave q can be represented as a linear combination 
of the four fundamental solutions as 

q(n)  = ~ ( n )  eiy,zs elax, e-i(dt 

n=1 

where D,(n = 1 , .  . . ,4 )  are complex constants determined by the boundary conditions 
on the layer. There is an established procedure for treating cases with repeated y- 
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roots ; see Hirsch & Smale (1974). The complex x3-dependent amplitude functions of 
the two-dimensional displacement field 11 = (ql, 0, q3)T are 

4 

i, = C DnBg)eiYnx3 ( p  = 1 and 3).  (17) 
n-1 

Substituting (16) into the constitutive relation (9b)  yields 

V P q  = 6 P, eiaz,e-iwt , ( 1 8 4  

(18 b) 

Following I, we define the displacemenestress vector which characterizes the 

4 

where 6,, = iDn eiYnz3 [(aC,,,, + y n  Cpq13)By) + (aC,,,, + y n  Cpq33)Bp)] .  
n=l  

displacement and the stress state for points in the layer as follows: 

S(x3) = ( + I >  Q3,  $31, G33)T. 

From (17)  and (18b),  S(z3) is linearly related to the constant vector D = (Dl,. . . 
as follows 

where Q(x3) is a 4 x 4 matrix with the components 
S(x3) = Q(x3)D, (19a) 

Qln = B?) En, Qzn = Bp) En,  (19b, c )  

1194 

(19e) 

Q3n = i[(aC1113+ynC1313)B?’ + (aC1313+yn C1333)BP’IEn, 

&4n = i[fac1133+~n C1333)B?) + (aC1333+yn C3333)Bp’lEn, 

and En = eiYnzs (n  = 1 , .  . . ,4) .  

It can be seen from (12~2, c )  and (19) that only six moduli really matter as far as two- 
dimensional wave propagation in the x,-direction is concerned, although 13 material 
parameters are needed for the most general anisotropic material with symmetry 
about the (xl, x3)-plane. 

For a homogeneous layer of thickness h (=  a-b) ,  extending from x3 = a to x3 = b 
(lower surface), we have, using equation (19a), 

S(b) = P(b, a )  S ( a )  (20) 

where P(b, a )  = Q ( b )  [Q(a)]-’ is termed the propagation matrix. P(b, a )  relates the 
displacement-stress state a t  the top of the layer to that a t  the bottom. The 
important properties of P(b ,a )  are given in I. 

The use of the propagation matrix permits a systematic treatment of wave 
propagation in compliant walls comprising any finite number of uniformly thick 
layers. For a compliant wall comprising n layers of anisotropic materials (with 
properties symmetric about the (xl, x3)-plane), let P(f ) ( z f ,  zf-l) denote the propagation 
matrix of thej th  layer, which is located between x3 = zjP1 and x3 = zj (lower surface). 
Assuming that adjacent layers are bonded together so that displacement and stress 
are continuous across the interface, we have, using (20) recursively, 

is termed the overall propagation matrix for the compliant wall. Po linearly relates 
the displacement-stress state a t  the top surface of the wall a t  x3 = z,, to that a t  the 
bottom of the last compliant layer a t  x3 = z,. More details are available in I. 
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2.2.3. Fluidwall  coupling and the stability eigenvalue problem 
Having established the necessary dynamics governing the two-dimensional 

disturbances in the flow and the wall, it remains to relate these a t  the flow-wall 
interface to complete the formulation of the eigenvalue problem. The interaction of 
the two media a t  their interface is governed by the condition of velocity continuity. 
The relevant equations, linearized about the mean interface a t  x3  = zo, are 

q l  = ~ 1 +  U'lj )3 ,  q 3  = ~ 3 .  P a ,  b )  

The linearized disturbance flow stresses acting on the wall are 

Note that U"(zo )  = 0 for the Blasius velocity profile. The non-dimensionalization 
scheme used in $2.2.2 is applicable to (22)  and ( 2 3 ) ;  in particular the lengthscale is 
L:). These equations, whose detailed derivation is given in I, are valid irrespective 
of the specific constitutive (stress-strain) relation for he compliant material. The 
interaction between the flow and the wall as given by and (23)  can be recast in 

(24 a)  
the form 

where 
m o )  = Q&O) 4,(w)(z13)> 

and 

0, is called the flow-wall coupling matrix. The superscript (w) is used above for 
the sole purpose of indicating that the 4 in (24)  is to be interpreted in the wall 
lengthscale of L?) like the other quantities of the equation. From (21)  and (24a)  we 
have the final form 

(25)  

where M, = Diag{r, 1 ,  r-', r -2}(r  = R,/R,). M, relates the flow disturbance amplitude 
function #Cw)  in the lengthscale L$? to 4 in the local flow lengthscale a(*); 
#w) = M,+. I n  (251, the matrices Po and 0, are in the wall lengthscale while 4, is 
in the flow lengthscale of #d). More details concerning the scheme of non- 
dimensionalization are given in $2.4 of I. Equation (25)  relates the disturbance in the 
flow a t  the mean flow-wall interface # ( z o )  to the displacement-stress state S(z,) a t  
the bottom surface of the last (nth) compliant layer. The last layer is assumed for the 
purposes here to be perfectly bonded onto a flat rigid base ; that  is G1(zn) = f 3 ( x , )  = 
0. 

2.2.3. Boundary conditions for the Orr-Sommerfeld equation 

The Orr-Sommerfeld equation (8) is a fourth-order ordinary differential equation 
and hence requires four boundary conditions. Two boundary conditions are 
applicable a t  the mean flow-wall interface a t  x3 = zo. These are obtained from the 
first two rows of (25)  by setting the left-hand sides of the two rows to zero; that is 

S(z, )  = Po Q, M, 4(zo) ,  
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i l(zn) = i,(z,) = 0, representing the condition that the last compliant layer is firmly 
bonded onto a rigid base. These boundary conditions, which are functions of a and 
o, cannot be given a simple explicit form; they are implemented within the scheme 
of numerical solution. 

Admissible disturbance modes q5(x3) are assumed to decay to zero as x3 tends to 
infinity. This yields the following boundary conditions on q5 : 

# = 0 at large x,, 
0 ax a+x "1 1 

ax a+x 

where x = (a2 + i d , (  1 -c)):, Re (x) > 0 and Re (a) > 0. 

In practice the boundary conditions (26) are applied somewhere in the free stream. 
A value of z3 = 6 (displacement thicknesses), which is about twice the boundary- 
layer thickness, is used for the results reported in this paper. 

With the boundary conditions (26) and the two boundary conditions obtained 
from (25) by setting i 1 ( z n )  = is(zn) = 0, the stability eigenvalue problem involving 
the 0s equation is now complete. We denote the eigenvalue relation symbolically by 

F ( a ,  w,R,) = 0. 

The solution of the eigenvalue problem may be achieved by some of the standard 
procedures described in Drazin & Reid (1981). The compound matrix method of Ng 
and Reid (1979) is used for integrating the 0s equation. The implementation details 
are given in Yeo (1986). 

The above theory is quite general and is applicable to layered anisotropic 
compliant walls whose materials exhibit material-property symmetry about the 
(xl, x,)-plane. If the symmetry condition is not satisfied, x,-propagating wave modes 
within the wall layers will be three-dimensional. The flow disturbance velocity 
component u2 will then be coupled to the components u1 and us via the three- 
dimensional dynamics of the compliant wall. The resultant stability problem will 
then be three-dimensional. The symmetry ensures that two-dimensional wall modes 
compatible with the 0s flow modes exist. 

2.3. Specification of properties 
We next consider the detailed specifications of properties for the transversely 
isotropic materials studied in this paper. From 52.1.2 we note that the mechanical 
properties of a homogeneous transversely isotropic material are determined when the 
five parameters G, G ,  v, u' and E are specified. This represents a dramatic reduction 
from the maximum of 21 moduli for the most general anisotropic material and 13 for 
the most general anisotropic material possessing a single plane of symmetry. But it 
is still a significant increase in number from the two (possibly complex) parameters 
required to specify an isotropic material. Furthermore, there is also the geometric 
parameter A, .  Thus six parameters (excluding layer thickness) must be specified for 
each transversely isotropic layer instead of just two for an isotropic layer. This 
represents a formidable variety considering that some of the parameters may be 
complex when there is internal damping. For the sake of simplicity and to keep the 
study manageable, we would prefer to have as few parameters as possible that need 
specifying. Some limitations would hence have to be placed on the range of 
transversely isotropic materials under study, The restrictions must, however, allow 
adequate scope for the kind of anisotropic responses we wish to study. 

To limit the range as much as possible and also retain the directional characteristics 
of the material and hence of the wall, we set G = G and u = u'. This makes the 
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material behave quite isotropically in shear and reduces the number of independent 
parameters to three ; namely G, v and E .  When E is given the value of 2G( 1 + v) we 
have an isotropic material. 

Next we consider the introduction of viscous damping. Since the materials of 
interest are behaviourally quite close to isotropic materials, we shall adapt available 
damping models for isotropic material to our case. For an isotropic medium which 
is Voigt-deviatoric (Voigt-damped shear mode) and elastic-dilatational (elastic bulk 
mode), the shear modulus G and Poisson’s ratio I, have form 

G = pCt-iwd, v = ( 3 K - - G ) / 2 ( 3 K + G ) ,  (27a, 6 )  

where p is the density, Ct the elastic shear speed, d the damping coefficient and K 
(real) the elastic bulk modulus of the material (see Bland 1960). C, is the speed of 
shear wave in the absence of damping (d = 0). G and v are therefore specified 
functions of frequency w when p,  C,, d and K are given. The properties of the 
isotropic-material compliant walls studied in I were specified in this manner. 

We can extend the above to the restricted class of transversely isotropic materials 
studied here by assuming their G and v values to be similarly given by (27). This 
amounts to saying that the material behaves like a damped isotropic material in 
shear. In the special context of fibre-reinforced materials, it can be interpreted in an 
intuitive sense to specify the properties of the isotropic matrix. It is also reasonable 
to incorporate some damping into the Young’s modulus E .  This is because uniaxial 
extension and compression of say a fibre-reinforced material along the axis of 
isotropy (fibre axis) will also stretch and compress the damped matrix. Rather than 
introducing an additional damping coefficient, however, E is allowed to take on an 
amount of damping equal to that of the imaginary part of E = 2G( 1 + u )  ; that is, the 
amount of damping it would have if the material were to be isotropic. E is hence 
given the form of 

E,, the real part of E‘, is the elastic Young’s modulus of the material along the fibre 
axis. When E, is large, extension and compression of the material along the fibre axis 
is strongly resisted. We also note that when K 9 IGI, vi < v,. A value of E, = 3pC; 
then closely approximates the case for damped isotropic materials. When the 
damping coefficient d = 0, the parameters G ,  v and E are all real and the material is 
elastic. 

To summarize, the properties of the transversely isotropic materials studied here 
are specified by the five parameters p,  C,, d,  K ,  E, and the geometric parameter A,. 
This is two more than are required for each isotropic layer. E’, determines the strength 
of the anisotropy and can be varied from the near-isotropic value of 3pC; to a large 
value for the case of highly inextensible fibres. A ,  sets the orientation of the 
anisotropy with respect to the (x1,x2,x3) frame. From these, the G, v and E’ are 
determined via (27) and (28). The moduli tensor for the stability problem [C,,,,] is 
then obtained using ( 5 )  and (6). 

The physical parameters of the compliant wall layers are non-dimensionalized as 
in 52.2.2 so that 

E = E,+i Im(E) .  (28) 

The material density p is assumed to be 1 .O for all the cases studied in this paper. The 
wall lengthscale L t )  is defined implicitly by specifying the reference Reynolds 
number R, = 2 x lo4 throughout. 
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2.4. Basic wave characteristics 
Wave propagation in transversely isotropic materials is necessarily more complex 
than that for isotropic media. Whereas the fundamental plane waves in an isotropic 
medium are either purely longitudinal (displacement of particles in the direction of 
wave propagation - bulk waves) or purely transverse (displacement perpendicular to 
the direction of propagation - shear waves), they are seldom purely longitudinal nor 
purely transverse for an anisotropic medium except along certain principal directions 
related to the anisotropy. Applying (12) in the material-property frame, a two- 
dimensional plane wave propagating in the (xi"), x$"))-plane along the fibre axis xirn) 
with the wavenumber vector ( O , O ,  7'"') satisfies the equations 

(Cgy3 [ y (" ) ]2 -pd)B1  = 0, (30a) 
( CiFi3 [y'")l2 - pw2) B, = 0, (30b)  

since CiYj, = CiF23 = 0 according to  (5). The equation corresponding to  B, is ignored 
above for reasons given in $2.2.2. Using ( 5 ) ,  the determinantal equation of (30) yields 
the following wave speeds Re (w /y ( " ) )  : 

Since G = G ,  i t  is noted from (27a) that ci") = C, when d = 0. cim) is greater than cirri). 
The successive substitutions of cim) and ci") into (30) show that they correspond 
respectively to the propagation of purely transverse and purely longitudinal waves 
in the xim)-direction. I n  the same manner it can be shown that purely transverse and 
purely longitudinal fundamental plane waves, having wave speeds of Re ( G / p ) i  and 
Re ( ( G  + M - l ) / p ) t  respectively, may propagate along the zim)-axis. Except for 
these principal directions, the fundamental plane waves propagating in the 
(xi"), xim))-plane are neither purely transverse nor purely longitudinal. In the 
absence of material damping, the wave speeds in the other directions are bounded 

The above concerns wave propagation within the material. When there is a 
boundary to the material, surface waves propagating along the boundary can also 
appear. Free-surface waves are the surface waves that can exist in the absence of any 
traction a t  the boundary. The free-surface wave modes of the compliant layer can 
also be determined from the theory of 52.2.2. Since $,(z,) = $,(z,) = 0 for compliant 
layers bonded onto a rigid base, we have from (21) 

above by cim) and below by ci") = C t' 

where 

Pg is the (i, j)-component of the overall propagation matrix Po. In  the case of free- 
surface waves, there is zero traction a t  the top surface; $33(zo) = &31(zo) = 0. Non- 
trivial wave modes then exist provided 

Det 2 = 0. (33) 
Equation (33) is the eigenvalue relation which relates the wave (phase) speed c and 
the wavenumber a for free-surface waves on a layered compliant wall. Material 
damping is assumed to be absent when computing the free-surface wave modes. 

The eigenvalue relation (33) is highly complex even for an isotropic layer. For any 
given wavenumber a, there is usually an infinite spectrum of wave speeds c. 
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ct Ef 
0.7 1.47* 

4.0 
9.5 

20 .0 
75.0 

1200.0 
0.7 4.0 

0.5 0.75* 
5.0 

10.0 
14.0 

141 CR 

60" 0.6687 
0.7471 
0.7661 
0.7726 
0.7773 
0.7800 

75" 0.7039 
60" 0.7471 
45" 0.7970 
30" 0.7579 
45" 0.4776 

0.6067 
0.6197 
0.6234 

* Indicates isotropic case. 

TABLE 1. Values of cE for transversely isotropic single-layer walls with p = 1.0, d = 0 and 
K = 500.0. 

Determination of wave speeds is normally accomplished by numerical search 
procedures. From the viewpoint of the stability study, only the lowest free-surface 
wave speed cR is of some interest. It corresponds intuitively to the 'softest ' dynamic 
mode of the compliant wall, and this mode is therefore likely to be the first to become 
'sensitive' to the disturbances present in the flow. Indeed, the inviscid work of Yeo 
& Dowling (1987) and viscous work of Yeo (1986) show that significant interactions 
between the compliant wall and flow disturbances, both of the desirable and 
undesirable kinds, take place only when the cR is somewhat less than the free- 
stream velocity U ,  of the flow. 

Because of the close relationship of the present type of anisotropy to isotropic 
material, the free-wave spectra of the transversely isotropic single-layer walls 
studied here bear qualitative similarities with the spectra of isotropic single-layer 
walls. In general, the wave speeds c increase in value as a becomes smaller. As a 
becomes large, the branches of the c-eigenvalue decrease in value and tend rapidly 
to finite limits. cR is therefore frequently given by the lowest c-eigenvalue a t  infinitely 
large a; and its value is independent of layer thickness h. For isotropic-material 
layers cR is just the speed of the well-known Rayleigh surface wave. In the case of 
multi-layer compliant walls, cR may belong to a mode with finite a, and can only be 
determined after a thorough eigenvalue search. 

The values of cR for some of the anisotropic walls examined in this paper are given 
in table 1. The values of cR are independent of the sign of the angle A, and are hence 
given in table 1 for absolute values ofA,. cE is normally larger than the corresponding 
isotropic value when E, > 3pC,2. For a given A,, cR tends to a finite limit as E,  
becomes very large. For a given E,, cR frequently attains its maximum value for an 
!A,\ between 40" and 50", and minimum value a t  JA,I = 0 or 90". 

3. Results and discussion 
Flows over compliant surfaces are susceptible to a wide variety of instabilities. At 

the broadest level, an instability is either a Tollmien-Schlichting instability (TSI) or 
a compliance-induced flow instability (CIFI). The former denotes instabilities that 
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are a modified form of the instability that originally exists on a rigid wall. Fluid 
viscosity is essential to their existence. The second category covers all instabilities 
which are brought into being by the compliant response of the wall. These are 
effectively suppressed when the wall becomes sufficiently stiff. Among the CIFI, 
three main types may be identified. The first two of these are related to the surface- 
wave modes and the static deformation modes of the compliant wall; see Yeo & 
Dowling (1987). They are termed the travelling-wave flutter and the static- 
divergence (abbreviated SD) instabilities respectively. The third type of CIFI is akin 
to  the classical Kelvin-Helmholtz instabilities and occurs when the wall or the 
surface is so soft that there is no real phase speed c, a t  which it can resist the pressure 
fluctuations of the flow. 

The instabilities may alternatively be classified as Class A, B or C in accordance 
with the ‘activation ’-energy scheme proposed by Benjamin (1963). The Tollmien- 
Schlichting (TS) and the SD modes are Class A instabilities. These modes are 
initiated by the extraction of energy from the coupled system and are therefore 
destabilized by wall damping. The flutter modes are Class B. They require positive 
activation energy and are stabilized by wall damping. Class C modes require little or 
no activation energy and a prime example is the Kelvin-Helmholtz instability. 

We are interested in the stability of the Blasius boundary layer over compliant 
walls which have material densities which are equal to that of the flow. Results 
concerning the effects of the anisotropy parameters A ,  and E,  on the TSI and the 
flutter instability modes are described in $53.1-3.4. Section 3.3 compares cases with 
opposite fibre orientation whilst in $3.4 a class of two-layer walls bearing some 
similarity with the walls of Grosskreutz and the anisotropic wall model of Carpenter 
& Morris is examined. Both TSI and flutter instabilities are primarily convective 
instabilities ; spatial modes (having real frequency o and complex wavenumber 
a = a,+ ia,) are accordingly employed for their study. There is instability, which 
corresponds to a downstream-growing wave, when a, < 0. When convective 
instabilities are the primary modes of instabilities, the potential of the wall for 
delaying transition can be assessed using the empirical en-rule of Smith & Gamberoni 
(1956). According to this rule, a disturbance introduced at  an upstream location 
triggers transition to turbulence when its amplitude grows by a factor of en. A value 
of n = 8.3 is used here. The growth factor between two points so and s is calculated 
according to the formula 

where (A( is a suitably defined disturbance amplitude. so is normally selected to  
correspond to points on the lower neutral branch. Integrated spatial growth factors 
according to (34) are computed for fixed values of the non-dimensional frequency 
parameter F = o/R,. 

The results given in 553.1-3.4 do not take into account the possible existence of 
divergence instability. SD instabilities have their origin in the static deformation 
modes of the compliant walls. Very little is known of the occurrence of SD instability 
in laminar boundary layers over compliant walls, both theoretically and ex- 
perimentally. SD instability is usually associated with very soft surfaces. Issues 
relating to SD instability are examined in 53.5. Here some of the walls which show 
in fjs 3.1-3.4 potential for significant transition delay are examined for their 
susceptibility to SD instability. Finally in $53.6 and 3.7, we look a t  the eigenfunctions 
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and examine the relationship between anisotropic surface response and gain in 
stability. 

In  presenting the results below, we adhere to  the scheme adopted in I. The 
instabilities are identified as being either a TSI or a CIFI. In  addition, the 
instabilities are labelled in accordance with Benjamin's energy scheme as either Class 
A or Class B. For more precise references to the various instability regimes, 
subscripts are also used. 

3.1. The effects of the anisotropy parameters E ,  and A ,  (negative values) for 
anisotropic single-layer walls having C, = 0.7 

Isotropic single-layer walls with elastic shear speed C, = 0.7 were studied in detail in 
I. It, was shown that isotropic single-layer walls with C, = 0.7, while admitting the 
possibility for strong CIFI, possess considerable potential for delaying transition if 
the walls are suitably damped. They hence provide a good starting point for our 
investigation into the effects of the anisotropy. Note that only cases with A ,  < 0 are 
considered in this and the next sections. Comparisons with cases having A ,  > 0 are 
made in $3.3. 

Figure 3 illustrates the effects of E, on the CIFI and the TSI for a layer 
with C, = 0.7, thickness h = 5.0 and material damping coefficient d = 0.0049. 
The fibre angle A, is -60" and the isotropic case is well approximated by a value of 
E, = 1.47. The cR values for the walls (see table 1) are all less than Urn, a condition 
necessary for significant interaction between the wall and the flow to occur. The 
isotropic case has a TSI regime (figure 3b) which is much smaller than the 
corresponding regime of a rigid wall. However, a t  this low level of material damping, 
the isotropic case (figure 3a)  suffers from strong Class B CIFI. Increase in E, can be 
seen in figure 3 ( a )  to  suppress the CIFI regimes and in figure 3 (b) to destabilize the 
TSI regimes. 

Increasing E, from the isotropic value of 1.47 to 4.0 causes the CIFI to split into 
the B, and B, regimes. I n  general the B, regimes have very small amplification rates 
and do not feature importantly in our analyses. At E, = 4.0, the spatial amplification 
rates of the B, regime (at R, = 4000, ai x -0.001, -0.0025 and -0.0036 a t  w = 0.2, 
0.3 and 0.4 respectively) are comparable with those of the TSI regime for E, = 5.0 
shown in figure 3(b). Although the B, regime stretches to  quite a large R,, the 
maximum growth rate for tthe B, regime is an order lower at ai x -0.0004. Further 
small increases in E, quickly suppress the B, regime; a t  E, = 9.5, the critical 
Reynolds number RY for the B, regime is greater than 3900. 

Increase in E, destabilizes the TSI, resulting both in a reduction of the critical 
Reynolds number R:r and an increase in the unstable w-bandwidth. Compared to the 
CIFI, which are largely suppressed with a value of E,  = 10, the TSI regimes appear 
to be much less sensitive to increase in E,. At E ,  = 20 and 75, the neutral boundaries 
of the TSI regimes do not deviate much from that of the isotropic case and they 
possess unstable w-bandwidths which are substantially smaller than that of a rigid 
wall. For the TSI regimes, a larger w-bandwidth generally indicates a larger 
maximum amplification rate, as well as an extended R,-range of amplification at a 
given value of the non-dimensional frequency F .  These regimes therefore have much 
lower amplification rates than a rigid wall, which can be confirmed by calculation. At 
Ef = 20, for which the CIFI are unimportant, the maximum spatial growth rate a t  
R, = 4000 is less than half the rigid-wall maximum of ai x -0.0125 a t  the same R,. 
Calculations based on the TSI regime (since the CIFI are suppressed) show that a 
maximum amplification factor of e8.3 is reached at the streamwise transition 
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FIGURE 3. The effects of E, on the marginal stability curves for a layer with h = 5.0, C, = 0.7, d = 
0.0049, K = 500.0 and A,  = -60". ( a )  CIFI: -, isotropic; ----, E, = 4.0; .-.-.-. , E,  = 6.2; 

E ,  = 75.0; 0, rigid wall. 
E =5.0; .-.-.-. E - 20.0. .._._..... , E,  = 9.5. ( b )  TSI: -, isotropic; ---- , I  2 1 -  > 

...._.____ 

Reynolds number of Rz w 10.97 x lo6 (R, x 5700). This is 3.86 times the estimated 
transition distance for a rigid wall which has Rt,' w 2.84 x lo6 (R, % 2900) for the 
same factor of growth. The maximum growth factor of e0.3 is assumed in the present 
study to give an approximate criterion for the onset of transition of the flow 
to a turbulent state. The predicted Rt,' of 10.97 x lo6 is close to the value of 
RE z 11.36 x lo6 given in 94.3 of I for the isotropic case (E,  w 1.47) in which the 
dominant CIFI were suppressed by applying a much higher level of material 
damping. The present results show that the anisotropy provides an effective 
alternative to material damping as a means to suppress the CIFI to give on balance 
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FIGURE 4. The effects of A,  on the marginal stability curves for a layer with h = 5.0, C, = 0.7, d = 
0.0049 and K = 500.0. (a) CIFI for E, = 4.0. ( b )  TSI for E, = 20.0. -, A ,  = -30"; -----, 
A,  = -450; .-.-.-. A - -60"; - - - - -  - - - - - ,  A ,  = -75"; 0, rigid wall. , f -  

a compliant wall with good potential for delaying transition. The reduction in the 
critical Reynolds number RY of the TSI regimes with increase in E, (figure 3 b )  
usually has a small effect on the estimated location of transition. 

We next consider the effects of fibre orientation on stability. They are illustrated 
in figures 4(a )  and 4(b) for CIFI and TSI respectively. The same basic wall with 
C, = 0.7, h = 5.0 and d = 0.0049 is used. 

Results for the TSI are given for E ,  = 20.0. Figure 4 ( b )  shows that the TSI regime 
becomes progressively smaller, and therefore less dominant, as -A,  becomes larger. 
Provided that E, is larger than the corresponding isotropic value, increasing -A,  
whilst keeping E, constant generally leads to a more stabilized TSI regime; in 
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particular one with narrower w-bandwidth in the range of higher R,. At smaller 
values of -A,  (say < 45"), TSI regimes are strongly destabilized by even small 
increases in E,. To effectively employ the anisotropy to produce significant transition 
delay, large -A,  appears desirable. 

Figure 4 ( a )  shows the CIFI regimes a t  three values of A, ;  -30", -45" and -60". 
A low value of E, = 4.0 is chosen in this case because the CIFI regimes are strongly 
suppressed a t  higher values of E,. The B, regimes again possess amplification rates 
that  are much lower than those of the B, and the TSI regimes. Only the B, regimes 
are of interest. The B, regime appears to be most subdued at A,  = -45". This 
corresponds to the occurrence of the largest cR among the three cases (see table 1 ) .  
As A ,  is increased from -45" to larger negative values, the B, regime becomes more 
dominant. This increasing dominance is believed to be related to the falling value of 
cR which has its maximum value a t  A ,  x -45". cR can be taken as a qualitative 
measure of the dynamic stiffness of the wall to short-wavelength instabilities which 
tend to be associated with flutter instability (BJ, more so than TSI. The smaller cR 
is, the 'softer' is the wall and hence the more susceptible it is to flutter instability. 
In  fact, if -A, is taken to be very large (say > 80°), cR can be very low even for 
infinitely large E,. For such large value of -A,, the B, regime cannot be suppressed 
by merely increasing E,. Other means of suppressing the regime, such as increasing 
damping, may have to be used. 

An optimum combination of A, and E, probably exists from the viewpoint of 
maximum transition delay; one which offers the best balance between the 
stabilization of the TSI and the B, regime. It is, however, computationally expensive 
to determine this optimum. The effects of the anisotropy remain qualitatively the 
same at other wall thicknesses. Thicker layers are generally to be preferred because 
of their lower basic compliance which ensures that the TSI regimes are highly 
subdued. 

3.2. The effects of E, and A,  (negative values) for single-layer walls having C, 
different from 0.7 

For single-layer isotropic-material walls, results in I indicate that the elastic shear 
speed C,, which is related to the elastic shear modulus (G) ,  = pC,Z, is the most 
important material parameter determining the compliant quality of the walls. C, 
must be somewhat less than 1.0 and greater than 0.5 for significant overall gain in 
flow stability to be realized. 

At C, = 1.0, CIFI are quite unimportant or non-existent. The marginal stability 
curves of the TSI regimes for isotropic layers with C, = 1.0 (see figure 7 of I) are in 
general fairly close to that of the rigid wall. Changes in E, and A, are found to have 
small effects on the TSI regimes. Increasing E, above the isotropic value leads to a 
stiffening of the wall material and does no more than move the compliant walls' 
marginal curves progressively closer to the rigid wall's curve. 

Figure 5 illustrates the effects of increasing E, for a layer with C, = 0.5, h = 5.0, 
d = 0.049 and A,  = -45". We note that cR is close to its maximum (for any given E,) 
at this value of A,. The suppressing influence of the anisotropy on the B, regime is 
therefore likely to be quite optimal. For the value of E, ( x 0.75) corresponding to an 
isotropic layer, there exists strong instabilities. The unstable regime marked B, 
(hatched on the unstable side) stretches to near-zero frequency. The unstable regime 
marked A, is derived from the coalescence of the TSI and the B, regime. Such 
coalescence occurs in low-C, walls when the damping is at a high level (d = 0.049 for 
the present case); more examples are given in $4.3 of I. The A, regime is bounded 
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FIGURE 6. The effects of E, on the marginal stability curves for a layer with h = 5.0, C, = 0.5, 
d = 0.049, K = 500.0 and A ,  = - 4 5 O .  - - - - - - - - - - ,  E, = 10.0; ----, E, = 14.0; -, rigid wall. 

above in the (R,, w)-plane by a branch-cut which is indicated schematically. When E, 
is increased to 5.0, the B, regime is effectively suppressed but coalescence between 
the TSI and B, regimes remains. The coalescence is, however, suppressed at E, = 7.0, 
with the B, regime existing only beyond R, of 3800. Thus, at this value of A,, increase 
in E,  is seen to be highly effective against the CIFI. Figure 6 shows the TSI regimes 
for even higher values of E, = 10.0 and 14.0. The CIFI do not appear to be important 
a t  these values of E,. For E, = 14.0, the TSI regime exhibits a very narrow band 
of unstable frequencies at the higher R,, much narrower than that of the rigid 
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wall's regime. The transitional Reynolds number RF is about 15.3 x lo6 (R, x 6720) 
for a maximum amplification factor of e8.3. Hence, it can be seen that for a soft basic 
layer (C, = 0.5), the anisotropy still provides an effective way to eliminate the CIFI 
to give a wall which exhibits considerable potential for delaying transition. The value 
of A ,  is crucial, however. When A, is increased to -60°, the B, regime cannot be 
effectively suppressed for E, as high as 1200. 

3.3. The case of positive Jibre orientation angle 
So far we have only examined cases with negative values ofA,. A typical set of results 
for walls with oppositely signed values of angle A, is given in figure 7. The fibre axis 
points into the oncoming flow when A, is positive. Figure 7 ( a )  shows the marginal 
stability curves for the B, and B, regimes for walls with E, = 4.0 and A, = -60°, 
+60°. Again a small value of E, is chosen for illustrational purpose. The marginal 
curves for the two walls are almost identical. I n  the case of TSI regimes, the 
differences in the stability characteristics of oppositely signed cases are also generally 
small (figure 7b) .  The differences are only prominent near the nose of the regimes, 
where it may be noted that cases with positive A ,  display slightly better stability in 
the form of a higher critical Reynolds number RY. A difference of about 200 in the 
R,"' in favour of the case with positive A ,  is observed for E, = 20.0. The improved 
stability is consistent with the expectation that negative Reynolds shear stress 71t, 

which is induced by positive A,, promotes stability. However, these differences 
between cases with oppositely signed A, may not be important as far as transition 
delay is concerned. This is because the potential of the walls for significant transition 
delay (based on the en criterion) is to a large extent determined by the growth rates 
of the TSI regimes in the range of higher R,, say above 2000. At higher R,, we can 
see from figure 7 (b)  that the differences in the marginal curves for oppositely signed 
cases are really quite small. Calculations confirmed that the spatial growth rates are 
also nearly identical for the walls. The predicted RF are consequently nearly the 
same. 

The results described above are generally valid for other walls when lA,l is 
sufficiently large, lAfl > 45' say. Cases with smaller lAPl tend to show somewhat 
greater differences in their stability characteristics to a change in the sign of A,. 
These cases are viewed with less interest here because, as noted before, the TSI 
regimes are then strongly destabilized by a small increase in E, above the isotropic 
value. It is also observed that, in general, the differences in the stability 
characteristics due to the sign of A, diminish with increasing R,. 

3.4. Two-layer anisotropic walls 
I n  this section we extend our study to cases of a specific class of two-layer walls which 
comprise a thin stiff layer of isotropic material bonded onto a much thicker but softer 
layer of transversely isotropic material. In  practice, the employment of a thin stiff 
outer (top) layer may be necessary to protect the soft underlayer from accidental 
damage. This practical feature is also manifested in the naturally evolved skin layer 
of the dolphins according to the study of Kramer (1965). Although the formulation 
allows multiple anisotropic layers to  be treated, the configuration studied has been 
kept simple to reduce the number of parameters that have to be specified. The two- 
layer walls investigated have overall thickness h = 5.0. The top layer is a thin layer 
(h") = 0.25) of a relatively stiff isotropic material with (7:') = 3.0 and d(') = 0.0049. 
The bracketed superscript denotes the layer number. The anisotropic second layer is 
selected to have a low matrix Clz) = 0.5 and d(,) = 0.0049 to secure good stability for 
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FIGURE 7 .  The marginal stability curves for anisotropic layers with h = 5.0, C, = 0.7, d = 0.0049 
and K = 500.0. Comparison of positive and negative values of A,. (a )  CIFI : -0-, A,  = 60°, 
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E, = 5.0; -----A.-----, A,  = 60", E, = 20.0; .-.v.-. 2 A 1 -  - -60°, E, = 20.0. 

the TSI regime a t  the larger R,. The two-layer walls also bear similarity with 
Grosskreutz's walls and the plate/sprung-lever model of Carpenter & Morris. When 
4') is large, the second layer exerts a strong restraining action on the motion of the 
top layer along the fibre axis. 

In many respects, it is found that the effects of the anisotropy of the second layer 
on flow stability are qualitatively similar to those already observed for single-layer 
walls. Below, we shall be contented merely with presenting some cases which 
demonstrate the potential of such anisotropic two-layer walls for delaying transition. 
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Figure 8 shows the effects of increasing El2) on the marginal stability curves for a 
fibre orientation angle of A;,) = - 60". Figure 8 (a )  shows the progressive suppression 
of the CIFI with increase in El2).  At El2) = 10.0 there is relatively strong CIFI. These 
modes can be effectively suppressed by increasing El2). At El2) = 24.5, the critical 
Reynolds number R,Cr of the B, regime is greater than 3900. The remaining B, regime 
is very narrow and again has very small amplification rates. The destabilizing 
influence of increasing E r )  on the TSI regime can be seen in figure 8 ( b ) .  At the value 
of Ei2) = 30 for which the CIFI are of no consequence, the wall shows a greatly 
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FIGURE 9. The marginal stability curves for a two-layer wall. Layer 1 : h = 0.25, C, = 3.0, d = 
0.0049, K = 1200.0, isotropic. Layer 2 :  h = 4.75, C, = 0.5, d = 0.0147, K = 500.0, A ,  = -60": 
,Tiz) = 10.0. -, compliant wall; -----, rigid wall. 

reduced w-bandwidth for the TSI regime at large R, when compared against the rigid 
wall's marginal curve. This is highly desirable. At low R,, the three marginal curves 
more or less coincide a.td are close to the rigid wall's curve. This is mainly the result 
of the relatively large value of the wavenumber aw (based on ~5:)) encountered in the 
nose region. The high wavenumber causes the disturbances to  be concentrated near 
the surface of the compliant walls where they are strongly resisted by the relatively 
high stiffness of the top layer. This can be confirmed by studying the wall 
eigenfunctions. Such behaviour has also been noted in I for isotropic-material layered 
walls possessing a stiff top layer. 

Another example of a two-layer wall is given in figure 9 for Ef2) = 10 and 
Ai2) = -60'. Here, instead of increasing E$ to  suppress the CIFI as in figure 8, the 
B, regime had been suppressed by increasing the material damping from d(') = 0.0049 
to 0.0147. The resulting wall has highly desirable stability characteristics. The w -  
bandwidth of the TSI regime a t  R, = 4000 is only very slightly wider than that for 
d = 0.0049 (see figure 8 b  for ES2) = 10) and is about half that of the rigid wall a t  the 
same R,. The maximum growth rate a t  R, = 4000 is ai x -0.003 compared with a 
maximum of ai x -0.0125 for a rigid wall. The maximum amplification envelope is 
shown in figure 10 with the envelope of a rigid wall. The maximum growth factor of 
e8.3 is reached a t  R$ x 20.44 x lo6 (R, x 7780), equivalent to a transition distance 7.2 
times that on a rigid wall. Reversal of fibre orientation produces little change in 
stability. This combination of material damping and anisotropy, both as means to 
suppress the Class B CIFI, produces a wall that  has better stability characteristics 
than a wall in which the suppression of the CIFI is achieved by either means alone. 
In  the absence of the anisotropy, increase in d(2)  alone may result in instability 
arising from mode coalescence. Increasing El2) alone with d(2)  fixed at 0.0049 would 
lead to significant broadening of the TSI regime at high R, (figure 8 b ) .  This example 
shows that a suitable combination of damping and anisotropy can be highly 
desirable. The approach utilizes the fairly well-established fact that an increase in 
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FIGURE 10. The maximum amplification envelopes for the anisotropic two-layer wall of figure 9 and 
a rigid wall : -, compliant wall ; -----, rigid wall. - - - - - - - - - -, total amplification curves at  F = 
f x 10-6. 

damping has a very small destabilizing effect on the low-frequency TSI modes at high 
R,. The method works provided Ei2) is sufficiently large that an increase in damping 
does not lead to coalescence. The estimated transition Reynolds numbers given 
above and in SS3.1 and 3.2 were not subject to any systematic optimization. 

3.5. Static-divergence instabilities 
The results presented so far pertain mainly to TSI and travelling flutter instabilities. 
These are primarily convective-type instabilities. The results show that significant 
reduction in spatial growth rates of TSI modes and effective suppression of 
convective CIFI can be simultaneously achieved with the appropriate choice of 
anisotropy parameters. Three examples with transition Reynolds numbers RE much 
greater than the rigid-wall value of 2.84 x lo6 were presented : the single-layer wall 
of figure 3 with E,  = 20.0 (RE = 10.97 x lo6) ; the single-layer wall of figure 6 with 
E,  = 14.0 (RE = 15.3 x lo6); and the two-layer wall of figure 9 (RE = 20.44 x lo6). 
These results augur well for the achievement of transition delay provided no other 
stronger instabilities exist. 

An instability of some interest is static divergence (SD). As the name suggests, this 
is a stationary or very slowly moving instability. SD instability has been observed 
experimentally by Hansen et al. (1980) and Gad-el-Hak, Blackwelder & Riley (1984) 
on highly damped isotropic viscoelastic layers under turbulent boundary layers. 
They were detected as two-dimensional surface waves with phase speed typically less 
than O.O5U,. The instability waves appeared only when the free-stream velocity Urn 
is much larger than C,, the elastic shear-wave speed of the material; with onset 
U ,  > 3.33Ct and 4.5Ct respectively according to Hansen et al. and Gad-el-Hak et al. 
No SD waves have been observed to date for two-dimensional laminar boundary 
layers over viscoeiastic layers. Gad-el-Hak et al. failed to find any SD waves under 
the Blasius boundary layer for U ,  as high as 1217,. It may be concluded from 
available experimental results that the onset UJC,  ratios for SD instability under 
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a laminar boundary layer, should it occur, are very high and very much higher than 
the onset ratios for turbulent layers. 

Theoretically, besides the knowledge that SD may be important in very 'soft' 
walls (low shear modulus - low C,/U, ratio, low p/pf  ratio, or both), the conditions 
for the occurrence of SD in viscous flow is not well known. According to Riley, Gad- 
el-Hak & Metcalfe (1988) and Carpenter & Morris (1990) SD is an absolute 
instability ; that is to say, an instability which results from the unstable coalescence 
(wi > 0) of an upstream and a downstream eigenstate (Briggs 1964). This is a highly 
plausible supposition. However, it has proved to be extremely difficult to establish 
the existence of such SD eigenstates for (viscous) boundary-layer flow if the criteria 
of Briggs are strictly followed; the author and others have encountered problems 
with numerical convergence in the vicin'ity of suspected absolutely unstable SD 
eigenstates. Temporal eigenmodes (a real and c = c,  + ic,) have customarily been used 
in the theoretical study of SD instability, identified as unstable eigenstates with 
small real phase speed c,. 

Duncan, Waxman & Tulin (1985) studied the onset of SD instability on isotropic 
viscoelastic (Voigt) layers by assuming the pressure fluctuations of the flow to be 
derived from those of a potential flow modified by a complex scaling factor of the 
form K,exp (id,). The magnitude scaling factor K ,  and the phase shift angle 8, were 
obtained from other experimental and theoretical sources. Duncan et al. found from 
extensive computation that SD instability may occur when U ,  > 2.86Ct in the case 
of turbulent boundary layers ( K ,  = 0.25, 8, = - 10"). For the turbulent case, their 
results are in qualitative agreement with the experimental results of Gad-el-Hak 
et al., both in trends and magnitudes for onset velocity and phase speed. Much higher 
onset speed U ,  > 5.92Ct was predicted for laminar boundary layers ( K ,  = 0.067, 
8, = -30.4"). Incidentally, these results can be arrived a t  more expeditiously by 
using the theory described in Yeo & Dowling (1987). In fact the theory, suitably 
modified, shows that SD instability of wavenumber a may only occur for Duncan 
et al.'s pressure model when 

u, > [ E ? ) / ( ~ K ,  cos e,)l$. (35) 
nE?)/a is the elastic energy stored in one x,-wavelength of the wall due to sinusoidal 
static deformation of unit amplitude at the surface (precise definition ih Yeo & 
Dowling). For isotropic material layers, EF)/a has a minimum value of 2pC; a t  
infinitely large a. Using the values of K ,  and 8, assigned by Duncan et al., 
the criterion (35) indicates that SD instability may occur for turbulent flow when 
U,  > 2.85Ct and for laminar flow when U ,  > 5.880,; very close to Duncan et aL's 
values quoted above. 

The occurrence of SD as temporal instabilities in Blasius and turbulent boundary 
layers over isotropic viscoelastic material layers was studied by Evrensel & Kalnins 
(1988). The mean turbulent boundary layer is modelled by the + power law with 
linear matching a t  the wall. They found unstable disturbance modes with c,  = 
0.54.6U, for walls with low to moderate damping. These correspond to the flutter 
(CIFI) modes of earlier sections. Increasing the damping to a sufficiently high level 
suppresses these modes but brings into being an instability with c, just a few percent 
of Urn, identified as the SD instability. For turbulent layers, their predictions of 
onset conditions also show substantially good agreement with the results of Gad-el- 
Hak et al. both in trends and magnitudes (except for wavelength). They also found 
the onset U,  for the Blasius boundary layer to be much higher than those for 
turbulent layers; the result given has onset U,  !z 12C,. 
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The maximum U,/C, ratio for the materials of the anisotropic walls studied here, 
and in particular the three cases which exhibit’ed significant potential for transition 
delay, is 2.0 (lowest C, = 0.5). This is less than the lowest onset U,/C, ratio quoted 
in the literature (experimental and theoretical) for turbulent boundary layers, not to 
mention the much higher ratios expected for laminar layers. For the two-layer case 
(figure Q), the top layer is of a stiff material with C, = 3U,. It has been found by 
Chung & Merrill (1984), however, that the attachment of a thin stiff layer over a soft 
and relatively thick viscoelastic layer strongly inhibits the occurrence of SD waves 
on the latter, Coupled with the generally low levels of material damping employed 
(elaborated further on), SD instability appears unlikely to be of importance to the 
three anisotropic cases. 

However, the walls studied here are in general thicker than those reported in the 
literature, with the exception of Duncan et al.’s results which are also applicable to 
thick layers. Gad-el-Hak et al. found that thick layers are more susceptible to SD 
instability. Their results (figure 6), however, indicate that the onset U,/C, ratio 
tends to finite limit a t  large thicknesses. An onset U,/C, limit of 3.5 was given by 
Hansen & Hunston (1974) for turbulent rotating-disk flow. To be reasonably 
confident that SD instability is not important for the three anisotropic cases, it was 
decided to examine their susceptibility in relation to a series of very soft and highly 
damped isotropic layers. These layers have thickness h = 5.0 (equal to that of the 
three anisotropic cases), C, = 0.5, 0 .3  and 0.1 (or U J C ,  = 2.0, 3.3, 10.0), and 
damping coefficient d = 0.049. The isotropic layers with C, = 0.3 and 0.1 are clearly 
much softer and, in quality terms, also much more highly damped (the relaxation 
time constant r = d / p C f  is a measure of the quality of damping) than the three 
anisotropic cases. They are therefore expected to be more prone to SD instability 
than the three anisotropic cases. Figure 11 (a)  shows the temporal SD eigenstates for 
these isotropic layers at R, = 2000. They correspond to the ‘upstream branch’ of 
Duncan et al. and the S- branch of Evrensel & Kalnins. They are all damped modes, 
with the eigenstates of C, = 0.1 approaching closest to being unstable. Similar 
damped modes were also found a t  other R, as far as could be ascertained. Since these 
more compliant and highly damped isotropic cases do not suffer from SD instability, 
it is considered very unlikely that SD instability will be important for the three 
anisotropic cases. 

For the softest isotropic case, which has C, = 0.1, unstable SD modes with small 
c, were, however, found when the damping was increased from d = 0.049 to a 
sufficiently high level. At d = 0.08, SD modes was found to exist for R, between about 
1800 and 2800. A feature of the instability, noted from the calculations, is that it has 
nearly constant dimensional wavelength over the range of unstable R,. This is 
because the instability exists within a very narrow wavenumber band, with 
wavenumber a, (based on L r ) )  between about 0.071 and 0.076. It has a nearly 
constant average A(d)/h(d) ratio which is about 16.8 a t  R, = 1940 and 17.2 a t  R, = 
2760). For d = 0.08, figure 11 ( b )  shows the existence of unstable SD modes of 
constant (with h(d)/h(d) = 17.4) existing from R, = 1940 to 2760. The average 
phase speed c, x 0.0577,. These are in qualitative agreement with the experimental 
results of Gad-el-Hak et al. and their observation that the instability wavelength 
does not scale with the local boundary-layer lengthscale. The h/h  ratios obtained 
here are larger than typical values given in Gad-el-Hak et al. for turbulent flow. This 
could be because the basic flow studied here is laminar and the layers are also 
significantly thicker than those of Gad-el-Hak et al. Furthermore, nonlinear effects 
are clearly very important in the SD waves observed by them. Further calculations 
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FIGURE 11. (a) Temporal SD eigenstates at R, = 2000 for isotropic single-layer walls with h = 5.0, 
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and imaginary parts of c respectively. (b)  Temporal SD eigenstates for the isotropic single-layer 
wail with h = 5.0, C, = 0.1, d = 0.08 and K = 500.0. The eigenstates have constant with A/h = 
17.4. -, c , ;  -----, 10 X c,. 

show that the unstable wavelength a t  the onset of SD instability decreases with 
reduction in thickness h, much in accordance with what Gad-el-Hak et al. observed 
for turbulent flow. 

That SD instability could be brought about by increasing damping when a wall is 
sufficiently soft suggests that high material damping may be a necessary condition 
for the existence of SD instability. Similar conclusions may be drawn from the results 
given by Evrensel & Kalnins. The three anisotropic cases which exhibited potential 
for delaying transition have rather low damping compared to the walls studied by 
Gad-el-Hak et aE. For Ug)  = 1 m/s and vtd) = m2 s corresponding to  the average 
conditions of their experiments, the relaxation time constant 7 for the most highly 
damped anisotropic layer studied here (based on d = 0.049, C, = 0.5) is about 0.004 s, 
which is significantly lower than the 1 s quoted by Gad-el-Hak et al. for their walls. 
The isotropic case exhibiting SD instability in figure 11 ( b )  has a relaxation time 
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FIGURE 12. Wall eigenfunctions of the anisotropic single-layer compliant wall of figure 3 (b )  
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constant of 0.16 s. It is pertinent to note that although the three isotropic cases in 
figurc 11 ( a )  with d = 0.049 do not appear to suffer from SD instability, they 
probably suffer from other strong CIFI because of their high compliance. 

3.6. Wall eigenfunctions 
Figure 12 shows the displacement eigenfunctions and the distributions of local 
dissipation rate for two eigenstates (A and B) of the anisotropic single-layer wall of 
figure 3 (b)  with E, = 20.0. When E, is much larger than the corresponding isotropic 
value, the dominant effect of the anisotropy is the strong restraint it places on wall 
displacement along the fibre axis. The material particles of the wall then trace out 
elliptical orbits with their major axes aligned more or less perpendicularly to the fibre 
axis. The larger E, is, the narrower are the ellipses, indicating that there is very little 
displacement along the fibre axis. This results in the significantly large horizontal 
displacement a t  the surface that can be seen in figure 12. In contrast, the horizontal 
displacement a t  the surface of isotropic-material layers tends to be rather small ; see 
figures 11 (a ,  b)  of I for example. Another distinctive feature of the eigenstates for 
anisotropic single-layer walls is the tendency for material dissipation to peak a t  the 
surface. In the case of isotropic layers, the dissipation a t  the surface is frequently a 
minimum point. 
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3.7. On anisotropic response and stability 
Using the non-slip condition (22a, b ) ,  it can be shown that the Reynolds stress rR 
induced a t  the mean interface (x, = x o )  as a result of compliant wall motion is given 
by 

rR(zo )  = - ( u ~ ) ~  ( u , ) ~  = -$02[f3f~]re-2ai51, (36) 

where the subscript r denotes the real part. Superscript * denotes complex 
conjugation. Equation (36) shows that rR(zo) is derived solely from the correlation 
between the horizontal (rl) and the vertical (7,) components of surface displacement. 
We note that = I f J  I f J  cos (i1, 4,) where cos ($1, f,) is the cosine of the angle 
between f 1  and 7j3 in the complex plane. If E, is sufficiently large, i t  is easy to see that 
[{,{,*I, z lijI2sinAf cosA,. Thus for large E,, negative (positive) rR(xo) is generated at  
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FIGURE 14. Reynolds shear stress ( T ~ )  distributions for the eigenstates at  R,  = 1000 on the upper 
neutral branch of the TSI/A regime for the same set of walls as figure 13. (a) A ,  = -60", E, = 20.0. 
(b )  A ,  = 60", E ,  = 20.0. 

the wall when A ,  is positive (negative). This feature of the anisotropy is amply 
confirmed by our calculations for both TSI and CIFI modes. 

A typical set of results which bear out the above is given in figure 13. The 
disturbance velocity eigenfunctions and the rR distributions belong to the TS 
eigenstates (R, = 4000 on the upper neutral branch) of two anisotropic walls whose 
neutral curves are given in figure 7 ( b ) .  The walls have E, = 20.0 and are identical 
except for the opposite orientation of the fibre axis; A ,  = f60". As in I, the 
eigenfunctions are normalized in such a manner that zia1 (uj), (u,)~,  termed the mean 
perturbation kinetic energy, is 1.0 a t  x3 = 6 (displacement thicknesses) and the 
Argument of 61,3 is -in at  x3 = z,, = 0. Except for small differences in the vicinity 
of x3 = 0, where it is noted that rR is negative (positive) for A ,  = 60" ( - S O 0 ) ,  the two 
sets of eigenfunctions are very similar. The great similarity between the eigen- 
functions underscores the close identity of the two eigenstates and the indifference 
of the marginal curves in the range of higher R, to a change in the sign of A,, as noted 
in $3.3. A further set of rR distributions for the same set of walls a t  the lower R, of 
1000 is given in figure 14. The effect of anisotropic surface response is more evident 
a t  this lower R,. Positive A ,  now favours a noticeably lower level of rR over the 
important region extending from the wall to x3 % 1 .  The beneficial effect of the 
reduced level of rR is reflected in the improved stability that can be seen in figure 7 (b)  
(E, = 20.0) near the nose for the case with A ,  > 0. In  general, this positive influence 
(for A ,  > 0) of the anisotropy on flow stability diminishes with increasing R,. In  the 
case of Class B CIFI, their indifference to a change in the sign of A,, even a t  fairly 
small R,, is probably a consequence of their highly inviscid nature (inertial origin). 
In  the inviscid limit, the instability is independent of horizontal displacement v1 and 
hence of any correlation between vl and v3.  

In general, except for fairly small differences in the vicinity of the wall, the flow 
eigenfunctions of anisotropic and isotropic layers a t  corresponding eigenstates (same 
R, and approximately equal values of w and ai) are very similar. Our eigenfunction 
results are broadly consistent with those of Domaradzki & Metcalfe (1986) who 
examined the energetics of small-amplitude Class A and Class B waves over 
membrane surfaces using a spectral flow-simulation code. For such surfaces, we note 
that q1(z0) and hence also r R ( z o )  are zero. For the TSI waves, our results show that 

0-2 



158 K.  S.  Ye0 

much of the activity is concentrated near the wall where the disturbance vorticity 
has a very strong peak and generally smaller values elsewhere. This is in agreement 
with Domaradzki & Metcalfe's observation that much of the activity associated 
with the TSI occurs in a thin layer next to the wall. In spite of this concentration of 
activity next to the wall, the anisotropic response has surprisingly small effects on 
the stability, especially at the higher R,. Part of the reason may be found in (36) 
which indicates that, subject to the normalization, the induced T ~ ( x J ,  whatever the 
sign, is proportional to 02. The higher-R, TSI modes in general have low o. For the 
CIFI modes, the eigenfunctions generally show intense activity in the vicinity of the 
critical layer ; and lower levels of activity at the wall, especially a t  the higher R,. This 
is broadly in agreement with Domaradzki & Metcalfe. The favourable effect of wall 
damping on the Class B CIFI is then probably communicated to the critical layer 
primarily via the non-viscous part of the stress field as suggested by them. 

It is appropriate a t  this juncture to  mention the recent paper of Carpenter & 
Morris ( 1990) on their rigid sprung-lever model. They reported transition Reynolds 
number Rt,' of similar magnitudes to those presented here. In contrast to the present 
work, however, their best results were obtained when the levers were inclined a t  
relatively small angles to the vertical, such as A ,  = 15" in our notation. From 
eigenfunction studies, they reasoned that the stabilization of the TSI regimes arose 
from the favourable long-range influence of their wall anisotropy on the Reynolds 
stress distribution leading to a significant overall reduction in disturbance energy 
production. At larger A, ,  they found the effects of the anisotropy to be greatly 
diminished so that the stability characteristics of the walls were quite indifferent to 
the sign of A, .  

4. Concluding summary 
The two-dimensional linear stability of the Blasius boundary layer over 

transversely isotropic material compliant walls has been studied. The theory 
formulated is also applicable to other homogeneous-material anisotropy provided 
that the mechanical properties are symmetrical about the (xl, 2,)-plane of the 
stability problem. 

For single-layer walls, increase in E, has been found in general to have a stabilizing 
effect on the CIFI and a destabilizing effect on the TSI. Examples given show that 
with the proper choice of anisotropy parameters E, and A,,  it may be possible to 
suppress the CIFI with minimal adverse effect on the TSI and hence produce an 
anisotropic wall with good potential for delaying transition to  turbulence. Provided 
the CIFI (B, regime) can be effectively suppressed by increasing E,, large lAfl appears 
to be generally preferable because the destabilizing influence on the TSI is then 
rather weak. Suitable values of lAJ are usually greater than or equal to 45". The 
choice of E, and A ,  that gives good transition delaying potential also depends rather 
critically on other parameters of the wall, such as thickness h, shear speed C, and 
damping coefficient d. Specific cases of a two-layer anisotropic wall which bear 
similarity with the Grosskreutz walls and the plate/sprung-lever model of Carpenter 
& Morris have also been studied. Examples presented show that such walls also 
possess considerable potential for delaying transition. Transition Reynolds numbers 
RE of up to 7.2 times the rigid-wall value have been obtained. Calculations indicate 
that SD instability is unlikely to be important for the anisotropic walls studied. 

CIFI eigenstates have generally been found to be quite independent of changes in 
the sign of A,. This independence is believed to be a consequence of the highly 
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inviscid nature of the CIFI. The TSI eigenstates a t  the larger R, have also been found 
to be independent of the sign of A,. The beneficial effect on flow stability of inducing 
negative 7R(z0) is only significant a t  lower Reynolds numbers where an increase in the 
critical Reynolds number of the TSI regime has normally been observed. At large R,, 
the low frequency of the TSI eigenstates probably contributes to make the induced 
7B(z0), whatever its sign, small. Since the TSI regimes at the higher R, are largely 
unaffected by the sign of A, ,  it is not unreasonable to deduce that the significant 
gains in stability (and projected transition distances) noted are to a large measure the 
consequences of some desirable changes to the compliant qualities of the wall, rather 
than from the direct effect of the anisotropy on the sign of 7R induced in the vicinity 
of the wall. 
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